Suggested timeline	CCSS	Learning Target	Resources
Week 1	N.RN.B. 3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational. A.SSE.A.1.a Interpret parts of an expression, such as terms, factors, and coefficients. A.SSE.A. 2 Use the structure of an expression to identify ways to rewrite it. Common Core Mathematical Practice Standards: 1, 2, 4, 6, 7	Students write and evaluate algebraic expressions. They also simplify numerical and algebraic expressions containing exponents and develop an understanding of irrational numbers.	1.1-1.3
Week 2	A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. A.CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A.SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. A.CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A.SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. Mathematical Practice Standards: 1, 2, 4, 7	Students need to be able to translate word problems into equations and inequalities and solve these for a specific variable. Students need to extend the concept of absolute value to equations.	1.4-1.6

Week 3\&4	F.BF.A. 1 Write a function that describes a relationship between two quantities. F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables . F.IF.C. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). A.CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. Mathematical Practice Standards: 1, 2, 4, 5, 7	Students need to be able to use information from a graph to find the equation of a line. Students need to able to com- pare the slopes of equations written in different forms.	2.1-2.4
Week 4\&5	F.IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. F.IF.C. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.BF.A. 1 Write a function that describes a relationship between two quantities. F.BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative) Mathematical Practice Standards: 1, 2, 4, 5, 7	Students need to be able to interpret the graph of a linear inequality. They also need to understand how changes to a basic function can alter its graph by shifting and compressing.	2.4-2.8
Week 6	A.REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. A.REI.D. 11 . . solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive	Students need to be able to solve a system of two equations involving fractions and decimals. Students need to be able to solve word problems that can be modeled by system of equations.	3.1-3.2

	approximations. Include cases where $f(x)$ and/or $g(x)$ are linear. . . . Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8		
Week 7	A.CED.A. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. A.REI.D. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. Mathematical Practice Standards: 1, 2, 3, 4, 6, 7	Students graph systems of inequalities and determine the region of overlap that satisfies the two inequalities. Students write inequalities for a real- world situation and solve those systems of inequalities.	3.3-3.4
Week 8\&9	A.APR.B. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A.SSE.A. 2 Use the structure of an expression to identify ways to rewrite it. Mathematical Practice Standards: 1, 2, 4, 5, 7	Students need to recognize patterns and use factoring techniques to factor completely. Students need to be able to solve and graph a quadratic equation.	4.1-4.5
Week 10	N.CN.A. 1 Know that there is an imaginary number i, and know that every complex number comes in the form $a+b i$, and that a, and b are real. N.CN.A. 2 Use the idea that $i^{\wedge} 2=-1$, and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. N.CN.C. 7 Solve quadratic equations with real coefficients that have complex solutions.	Students need to understand operations with complex numbers. Students need to solve quadratic equations having complex solutions and solve linear-quadratic systems.	4.8-4.9

	A.REI.C. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. . N.CN.C. 7 Solve quadratic equations with real coefficients that have complex solutions. A.REI.C. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8		
Week 11	F.IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables. F.IF.C. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. F.BF.A. 1 Write a function that describes a relationship between two quantities. A.APR.B. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A.SSE.A. 2 Use the structure of an expression to identify ways to rewrite it. A.REI.D. 11 Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$ Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8	Students need to understand the behaviors of polynomial functions and graphs. Students need to write a polynomial function to model a given situation.	5.1-5.3

