Algebra II A SLHS Updated 2014

Suggested timeline	CCSS	Learning Target	Resources
Week 1	 N.RN.B.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational. A.SSE.A.1.a Interpret parts of an expression, such as terms, factors, and coefficients. A.SSE.A.2 Use the structure of an expression to identify ways to rewrite it. Common Core Mathematical Practice Standards: 1, 2, 4, 6, 7 	Students write and evaluate algebraic expressions. They also simplify numerical and algebraic expressions containing exponents and develop an understanding of irrational numbers.	1.1-1.3
Week 2	 A.CED.A.1 Create equations and inequalities in one variable and use them to solve problems. A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A.SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. A.CED.A.1 Create equations and inequalities in one variable and use them to solve problems. A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A.SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. Mathematical Practice Standards: 1, 2, 4, 7 	Students need to be able to translate word problems into equations and inequalities and solve these for a specific variable. Students need to extend the concept of absolute value to equations.	1.4-1.6

Week 3&4	 F.BF.A.1 Write a function that describes a relationship between two quantities. F.IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables . F.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). A.CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. Mathematical Practice Standards: 1, 2, 4, 5, 7 	Students need to be able to use information from a graph to find the equation of a line. Students need to able to com- pare the slopes of equations written in different forms.	2.1-2.4
Week 4&5	F.IF.B.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.F.IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.F.BF.A.1 Write a function that describes a relationship between two quantities.F.BF.B.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k, k f(x), f(kx), and f(x + k)$ for specific values of k (both positive and negative)Mathematical Practice Standards: 1, 2, 4, 5, 7	Students need to be able to interpret the graph of a linear inequality. They also need to understand how changes to a basic function can alter its graph by shifting and compressing.	2.4-2.8
Week 6	 A.REI.C.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. A.REI.D.11 solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive 	Students need to be able to solve a system of two equations involving fractions and decimals. Students need to be able to solve word problems that can be modeled by system of equations.	3.1-3.2

	 approximations. Include cases where f(x) and/or g(x) are linear Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8 		
Week 7	 A.CED.A.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. A.REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes. Mathematical Practice Standards: 1, 2, 3, 4, 6, 7 	Students graph systems of inequalities and determine the region of overlap that satisfies the two inequalities. Students write inequalities for a real- world situation and solve those systems of inequalities.	3.3-3.4
Week 8&9	 A.APR.B.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. A.SSE.A.2 Use the structure of an expression to identify ways to rewrite it. Mathematical Practice Standards: 1, 2, 4, 5, 7 	Students need to recognize patterns and use factoring techniques to factor completely. Students need to be able to solve and graph a quadratic equation.	4.1-4.5
Week 10	 N.CN.A.1 Know that there is an imaginary number <i>i</i>, and know that every complex number comes in the form <i>a</i> +<i>bi</i>, and that <i>a</i>, and <i>b</i> are real. N.CN.A.2 Use the idea that <i>i</i>² = -1, and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers. N.CN.C.7 Solve quadratic equations with real coefficients that have complex solutions. 	Students need to understand operations with complex numbers. Students need to solve quadratic equations having complex solutions and solve linear-quadratic systems.	4.8-4.9

	 A.REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically N.CN.C.7 Solve quadratic equations with real coefficients that have complex solutions. A.REI.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8 		
Week 11	F.IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables.F.IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.F.BF.A.1 Write a function that describes a relationship between two quantities.A.APR.B.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.A.SSE.A.2 Use the structure of an expression to identify ways to rewrite it.A.REI.D.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ Mathematical Practice Standards: 1, 2, 4, 5, 6, 7, 8	Students need to understand the behaviors of polynomial functions and graphs. Students need to write a polynomial function to model a given situation.	5.1-5.3