The following CCSS's are embedded throughout the year, and are present in all units applicable:

CCSS Math Practices:

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure
8 Look for and express regularity in repeated reasoning.

School wide assessments:

- Moby Max - Fall and Spring
- Discovery Ed. Benchmark Assessment - Test A (Fall), Test B (Winter) Test C (Spring)

Unit/Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 1- Numerical Expressions and Factors	- CCSS.Math.Content.6.NS.B. 2 Fluently divide multi-digit numbers using the standard algorithm. - CCSS.Math.Content.6.NS.B. 4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+$ 8 as $4(9+2)$... - CCSS.Math.Content.6.EE.A. 1 Write and evaluate numerical expressions involving whole-number exponents. - CCSS.Math.Content.6.EE.A. 2 Write, read, and evaluate expressions in which letters stand for numbers.	I can fluently divide multidigit numbers using the standard algorithm. I can find the greatest common factor for numbers less than or equal to 100. I can find the least common multiple of two whole numbers less than or equal to 12. I can use the Distributive Property to factor out the greatest common factor from an addition expression with two whole numbers.	Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources	Quiz 1.1-1.3 Quiz 1.4-1.6 Chapter 1 Test A

Unit/Essential Question Chapter 3 - Algebraic Expressions and Properties	CCSS - CCSS.Math.Content.6.NS.B. 4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+$ 8 as $4(9+2) \ldots$ - CCSS.Math.Content.6.EE.A. 2 Write, read, and evaluate expressions in which letters stand for numbers. - CCSS.Math.Content.6.EE.A.2a Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$. - CCSS.Math.Content.6.EE.A.2b Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. - CCSS.Math.Content.6.EE.A.2c Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s 3$ and $A=6 s 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	Learning Target I can find the greatest common factor for numbers less than or equal to 100. I can find the least common multiple of two whole numbers less than or equal to 12. I can use the Distributive Property to factor out the greatest common factor from an addition expression with two whole numbers. I can write and evaluate expressions involving exponents. I can write an expression with variables. I can identify the operations of an expression and explain that a quantity (parenthesis) is both a number by itself and two numbers with an operation. I can evaluate an expression/equation using order of operations when given the value of a variable.	Resources/ Mentor Texts Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources	\quad Assessment Quiz 3.1-3.2 Quiz 3.3-3.4 Chapter 3 Test A

Unit/Essential	- CCSS.Math.Content.6.G.A.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. - CCSS.Math.Content.6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 4 - Areas of Polygons		I can find the area of triangles, quadrilaterals, and polygons by decomposing shapes to help me find the area in a real-world problem. I can draw polygons on a coordinate plane and use the coordinates to find the lengths of the side(s) to help me solve real world problems.	Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources	Quiz 4.1-4.2 Quiz 4.3-4.4 Chapter 4 Test A

Unit/Essential				Assessment
Chapter 5 - Ratios and Rates	- CCSS.Math.Content.6.RP.A. 1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes." - CCSS.Math.Content.6.RP.A. 2 Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."1 - CCSS.Math.Content.6.RP.A. 3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. - CCSS.Math.Content.6.RP.A.3a Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	I can use ratios to compare data. I can identify unit rates. I can create a table of equivalent ratios, find missing values, and then plot on a coordinate plane. I can solve unit rate problems. I can understand percent as a rate per hundred and solve problems involving finding the whole if given a part and the percent. I can use ratios to convert or change quantities to appropriate measurement units.	Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources	Quiz 5.1-5.4 Quiz 5.6-5.7 Chapter 5 Test A

	and absolute value of rational numbers. - CCSS.Math.Content.6.NS.C.7a Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right. - CCSS.Math.Content.6.NS.C.7b Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-$ $7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $7^{\circ} \mathrm{C}$. - CCSS.Math.Content.6.NS.C.7c Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars. - CCSS.Math.Content.6.NS.C.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars. - CCSS.Math.Content.6.NS.C. 8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	determine which number is farther from zero. I can solve real-world and mathematical problems by graphing coordinate pairs on a 4 quadrant coordinate plane and use absolute value to find the distance between two points on the same X or Y axis.		

Unit/Essential	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Question Chapter 7 - Equations and Inequalities	- CCSS.Math.Content.6.RP.A. 3 Use ratio and rate reasoning to solve realworld and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. - CCSS.Math.Content.6.RP.A.3a Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. - CCSS.Math.Content.6.EE.B. 5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. - CCSS.Math.Content.6.EE.B. 6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. - CCSS.Math.Content.6.EE.B.7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	I can create a table of equivalent ratios, find missing values, and then plot on a coordinate plane. I can explain if a value from a set makes an inequality or equation true/false. I can write an expression or equation using a variable that helps me solve a real-world problem. I can solve a real-world and mathematical problems by evaluating an expression or equation when the variable is a positive rational number. I can write an inequality about a real-world situation and recognize that it has infinite solutions. I can graph that inequality on a number line. I can write an equation involving dependent and independent variables and evaluate that equation.	Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources Hands-on Equations Kits	Quiz 7.1-7.4 Quiz 7.5-7.7 Chapter 7 Test A

Unit/Essential				Assessment
Chapter 9- Statistical Measures	- CCSS.Math.Content.6.SP.A. 1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages. - CCSS.Math.Content.6.SP.A. 2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. - CCSS.Math.Content.6.SP.A. 3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number. - CCSS.Math.Content.6.SP.B. 4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots. - CCSS.Math.Content.6.SP.B. 5 Summarize numerical data sets in relation to their context, such as by: - CCSS.Math.Content.6.SP.B.5a Reporting the number of observations. - CCSS.Math.Content.6.SP.B.5b Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	I can write a statistical question that has more than one right answer. I can describe a set of data using its center (mode, median or mean) its spread (range or M.A.D) and its shape. I can describe a measure of center and a measure of variation for a data set. I can display data on a number line, dot plot (line plot), histogram, and box and whisker plot. I can tell how many items are in a data set. I can describe how data was collected and in what unit of measure. I can find the median, mean, interquartile range, mean absolute deviation (average distance from the mean) and outliers in a set of data.	Big Ideas Textbook Big Ideas Record and Practice Journal Big Ideas online resources	Quiz 9.1-9.3 Quiz 9.4-9.5 Chapter 9 Test A

	and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.			

