The following CCSS's and Mathematical Practices are embedded throughout the year, and are present in all units applicable:				
CCSS.Math.Practice.MP3 Construct viable arguments and critique the reasoning of others.				
CCSS.Math.Practice.MP4 Model with mathematics.				
CCSS.Math.Practice.MP5 Use appropriate tools strategically.				
CCSS.Math.Practice.MP6 Attend to precision.				
CCSS.Math.Practice.MP7 Look for and make use of structure.				
CCSS.Math.Practice.MP8 Look for and express regularity in repeated reasoning.				
School Wide Assessments: FALL: Moby Math, Discovery ED Benchmark Test A WINTER: Discovery ED Benchmark Test B SPRING: Moby Math, Discovery ED Benchmark Test C				
Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 1 Place Value	CCSS.Math.Content.5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. CCSS.Math.Content.5.NBT.A. 3 Read, write, and compare decimals to thousandths. CCSS.Math.Content.5.NBT.A.3a Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times$ $(1 / 100)+2 \times(1 / 1000)$. CCSS.Math.Content.5.NBT.A.3b Compare two decimals to thousandths based on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparison	I can understand and explain the value of digits. I can read, write and compare decimals to thousandths.	McGraw- Hill My Math Volume 1	Check My Progress Quiz Chapter Test 2B

Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 2 Multiply Whole Numbers	CCSS.Math.Content.5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .	I can explain patterns when multiplying a number by powers of 10 . I can explain patterns when a decimal is multiplied or divided by a power of $\mathbf{1 0}$. I can multiply multi-digit whole numbers.	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume } 1 \end{aligned}$	Check My Progress Quiz Chapter Test 2B
Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 3 Divide by One-Digit Divisor	CCSS.Math.Content.5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	I can divide four-digit dividends by two-digit divisors. I can illustrate and explain a division problem using equations, arrays, and/or models.	McGraw- Hill My Math Volume 1	Check My Progress Quiz Chapter Test 2B

Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 4 Divide by a Two-digit Divisor	CCSS.Math.Content.5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	$\begin{gathered} \text { I can divide } \\ \text { four-digit } \\ \text { dividends by } \\ \text { two-digit } \\ \text { divisors. } \\ \text { I can illustrate } \\ \text { and explain a } \\ \text { division } \\ \text { problem using } \\ \text { equations, } \\ \text { arrays, and/or } \\ \text { models. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume } 1 \end{aligned}$	Check My Progress Quiz Chapter Test 2B
Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 5 Add and Subtract Decimals	CCSS.Math.Content.5.NBT.A. 4 Use place value understanding to round decimals to any place. CCSS.Math.Content.5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	I can use place value understanding to round decimals to any place. I can add, subtract, multiply, and divide decimals to hundredths. I can use concrete models or drawings to explain the method used.	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume } 1 \end{aligned}$	Check My Progress Quiz Chapter Test 2B

Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 6 Multiply and Divide Decimals	CCSS.Math.Content.5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 . CCSS.Math.Content.5.NBT.A. 4 Use place value understanding to round decimals to any place. CCSS.Math.Content.5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm. CCSS.Math.Content.5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	I can explain patterns when multiplying a number by powers of 10 . I can explain patterns when a decimal is multiplied or divided by a power of $\mathbf{1 0}$. I can use place value understanding to round decimals to any place. I can multiply multi-digit whole numbers. I can add, subtract, multiply, and divide decimals to hundredths. I can use concrete models or drawings to explain the method used.	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume 1 } \end{aligned}$	Check My Progress Quiz Chapter Test 2B

Unit/ Essential Question		Learning Target	Resources/ Mentor Expressions and Patterns	CCSS.Math.Content.5.OA.A.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

	CCSS.Math.Content.5.G.A. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y coordinate). CCSS.Math.Content.5.G.A. 2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	I can understand how to graph ordered pairs on a coordinate plane. I can graph and interpret points in the first quadrant of a coordinate plane.		
Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 8 Fractions and Decimals	CCSS.Math.Content.5.NF.B. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	I can understand that fractions are really the division of a numerator by the denominator. I can solve word problems where I divide whole numbers to create an answer that is a mixed number.	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume } 2 \end{aligned}$	Check My Progress Quiz Chapter Test 2B

Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
	CCSS.Math.Content.5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3$ $+5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d+b c) / b d$. $)$ CCSS.Math.Content.5.NF.A. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.	I can add and subtract fractions with unlike denominators and mixed numbers. I can solve word problems that involve fractions.	$\begin{aligned} & \hline \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume 2 } \end{aligned}$	Check My Progress Quiz Chapter Test 2B
Unit/ Essential Question	CCSS	Learning Target	$\begin{gathered} \text { Resources/ } \\ \text { Mentor } \\ \text { Texts } \\ \hline \end{gathered}$	Assessment
Chapter 10 Multiply and Divide Fractions	CCSS.Math.Content.5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. CCSS.Math.Content.5.NF.B.4a Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times$ $(c / d)=a c / b d$.	I can multiply a fraction or whole number by a fraction. I can use different ways to multiply a fraction or a whole number by a fraction.	$\begin{aligned} & \hline \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume 2 } \end{aligned}$	Check My Progress Quiz Chapter Test 2B

CCSS.Math.Content.5.NF.B.4b Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

CCSS.Math.Content.5.NF.B. 5 Interpret multiplication as scaling (resizing), by:

CCSS.Math.Content.5.NF.B.5a Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.

CCSS.Math.Content.5.NF.B.5b Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplyinga/b by 1 .

I can use a
model to multiply a fraction by a fraction.

I can think of multiplication of the scaling of a number (similar to a scale on a map).

I can use a number line to compare fractions.

I can

 understand and explain the relationship between afraction and the number 1 when multiplying.

CCSS.Math.Content.5.NF.B. 6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

CCSS.Math.Content.5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

CCSS.Math.Content.5.NF.B.7a Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.

CCSS.Math.Content.5.NF.B.7b Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.

CCSS.Math.Content.5.NF.B.7c Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?

I can solve real world problems by multiplying fractions and

 mixed numbers.
I can divide

 fractions by whole numbers and whole numbers by fractions.
I can use models

 to divide unit fraction by whole numbers.
I can use models

 to divide a whole numbers by a fraction.
I can solve real

 world problems by dividing fractions and whole numbers.| Unit/ Essential Question | CCSS | Learning Target | Resources/ Mentor Texts | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| Chapter 11 Measurement | CCSS.Math.Content.5.MD.A. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
 CCSS.Math.Content.5.MD.B. 2 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. | I can convert measurements within the same measuring system.
 I can make a line plot to display data sets of measurements in fractions.
 I can use fraction operations to solve problems involving information presented on a line plot. | $\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume 2 } \end{aligned}$ | Check My
 Progress Quiz
 Chapter Test 2B |

Unit/ Essential Question	CCSS	Learning Target	Resources/ Mentor Texts	Assessment
Chapter 12 Geometry	CCSS.Math.Content.5.G.B. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. CCSS.Math.Content.5.G.B. 4 Classify two-dimensional figures in a hierarchy based on properties. CCSS.Math.Content.5.MD.C. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. CCSS.Math.Content.5.MD.C.3a A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. CCSS.Math.Content.5.MD.C.3b A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. CCSS.Math.Content.5.MD.C. 4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.	I can classify shapes into categories. I can classify shapes based on properties. I can understand volume. I can measure volume by counting unit cubes.	$\begin{aligned} & \text { McGraw- Hill } \\ & \text { My Math } \\ & \text { Volume } 2 \end{aligned}$	Check My Progress Quiz Chapter Test 2B

