The following are embedded throughout the year, and are present in all units applicable:
Math Practices
CCSS.Math.Practice.MP1 Make sense of problems and persevere in solving them.
CCSS.Math.Practice.MP2 Reason abstractly and quantitatively.
CCSS.Math.Practice.MP3 Construct viable arguments and critique the reasoning of others.
CCSS.Math.Practice.MP4 Model with mathematics.
CCSS.Math.Practice.MP5 Use appropriate tools strategically.
CCSS.Math.Practice.MP6 Attend to precision.
CCSS.Math.Practice.MP7 Look for and make use of structure.
CCSS.Math.Practice.MP8 Look for and express regularity in repeated reasoning.

## Annual Assessments

- Discovery Education Benchmark Assessments given in September, January, and May
- InQuIzit Assessment given in September, January and May

Monitor multiplication and division fact fluency through tools such as Moby Max Math, Mad Minutes, XtraMath, etc.

| Unit/ Essential Question | CCSS | Learning Target | Resources/ Mentor Texts | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| Unit 1 Place Value and Multidigit Addition and Subtraction | CCSS.Math.Content.4.NBT.A. 1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division. <br> CCSS.Math.Content.4.NBT.A. 2 Read and write multi- | I can recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. <br> I can read and write | $\begin{aligned} & \text { Math Expressions } \\ & \hline \text { Common Core } \\ & \mathbf{4}^{\text {th }} \text { Grade } \\ & \text { Unit } 1 \end{aligned}$ | Quick Quiz 1-1 <br> Quick Quiz 1-2 <br> Quick Quiz 1-3 <br> Unit 1 Review and Test Forms A and B |



| Unit 2 <br> Multiplication With Whole Numbers | and estimation strategies including rounding. <br> CCSS.Math.Content.4.MD.A. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale <br> CCSS.Math.Content.4.NBT.A. 1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division. | remainders mean. <br> I can represent an equation with a letter representing an unknown quantity. <br> I can check my answer using estimation. <br> I can use operations to solve word problems. <br> I can recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. | Math Expressions <br> Common Core $4^{\text {th }}$ Grade <br> Unit 2 | Quick Quiz 2-1 <br> Quick Quiz 2-2 <br> Quick Quiz 2-3 <br> Quick Quiz 2-4 <br> Unit 2 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |

CCSS.Math.Content.4.NBT.B. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

CCSS.Math.Content.4.OA.A. 3 Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted.
Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

CCSS.Math.Content.4.NBT.A. 2 Read and write multidigit whole numbers using base-ten numerals, number


| Unit 3 <br> Division With <br> Whole <br> Numbers | CCSS.Math.Content.4.NBT.B. 6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. <br> CCSS.Math.Content.4.OA.A.3 Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. <br> CCSS.Math.Content.4.NBT.A. 3 Use place value understanding to round multi-digit whole numbers to any place. | I can find whole number quotients and remainders with up to four digit dividends and one digit divisors. <br> I can solve multistep word problems posed with whole numbers using all four operations. <br> I can determine what remainders mean. <br> I can represent an equation with a letter representing an unknown quantity. <br> I can check my answer using estimation. <br> I can use place value understanding to round multidigit whole numbers to any place | Math Expressions Common Core $4^{\text {th }}$ Grade Unit 3 | Quick Quiz 3-1 <br> Quick Quiz 3-2 <br> Unit 3 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |


| Unit 4 <br> Equations and Word Problems | CCSS.Math.Content.4.NBT.B. 4 Fluently add and subtract multi-digit whole numbers using the standard algorithm. <br> CCSS.Math.Content.4.NBT.B. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. <br> CCSS.Math.Content.4.NBT.B. 6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. <br> CCSS.Math.Content.4.OA.A. 1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations. | I can fluently add and subtract multidigt whole numbers using the standard algorithm. <br> I can multiply two digit numbers. <br> I can find whole number quotients and remainders with up to four digit dividends and one digit divisors. <br> I can understand that multiplication fact problems can be seen as comparisons of | Math Expressions Common Core $4^{\text {th }}$ Grade Unit 4 | Quick Quiz 4-1 <br> Quick Quiz 4-2 <br> Quick Quiz 4-3 <br> Quick Quiz 4-4 <br> Unit 4 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |




| Unit 5 <br> Measurement | CCSS.Math.Content.4.MD.A. 1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ... <br> CCSS.Math.Content.4.MD.A. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. <br> CCSS.Math.Content.4.MD.A. 3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. | I can show that I know the relative size of measurement units within a single system <br> I can show the measurements of a larger unit in terms of smaller units and record these in a table. <br> I can use the four operations to solve word problems involving measurement. <br> I can use what I know about area and perimeter to solve real world problems involving rectangles. | Math Expressions <br> Common Core <br> $4^{\text {th }}$ Grade <br> Unit 5 | Quick Quiz 5-1 <br> Quick Quiz 5-2 <br> Unit 5 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |


| Unit 6 <br> Fraction Concepts and Operations | CCSS.Math.Content.4.MD.B. 4 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. <br> CCSS.Math.Content.4.NF.A. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. | I can make a line plot to show measurements involving fractions. <br> I can solve problems involving addition and subtraction of fractions by using information presented in line plots. <br> I can compare two fractions with different numerators and different denominators by creating common denominators or numerators or by comparing them to a benchmark fraction like $1 / 2$. <br> I can recognize that comparisons of fractions are valid only when the two fractions refer to the same whole. | Math Expressions <br> Common Core <br> $4^{\text {th }}$ Grade <br> Unit 6 | Quick Quiz 6-1 <br> Quick Quiz 6-2 <br> Quick Quiz 6-3 <br> Unit 6 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |




| Unit 7 <br> Fractions and Decimals | CCSS.Math.Content.4.MD.A. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. <br> CCSS.Math.Content.4.MD.B. 4 Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection. <br> CCSS.Math.Content.4.NF.A. 1 Explain why a fraction $a / b$ is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. | operations to solve <br> word problems involving measurement. <br> I can make a line plot to show measurements involving fractions. <br> I can solve word problems involving addition and subtraction of fractions by using information presented in line plots. <br> I can explain why multiplying a numerator and a denominator by the same number does not change the value of a fraction. | Math Expressions <br> Common Core $4^{\text {th }}$ Grade <br> Unit 7 | Quick Quiz 7-1 <br> Quick Quiz 7-2 <br> Quick Quiz 7-3 <br> Unit 7 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |

$\left.\left.\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { I can compare two } \\ \text { fractions with }\end{array} \\ \text { different numerators } \\ \text { CCSS.Math.Content.4.NF.A.2 Compare two fractions } \\ \text { with different numerators and different denominators, } \\ \text { e.g., by creating common denominators or numerators, } \\ \text { or by comparing to a benchmark fraction such as 1/2. } \\ \text { Recognize that comparisons are valid only when the } \\ \text { two fractions refer to the same whole. Record the } \\ \text { results of comparisons with symbols }>,=, \text { or }<, \text { and } \\ \text { justify the conclusions, e.g., by using a visual fraction } \\ \text { model. } \\ \text { denominators or } \\ \text { numerators or by } \\ \text { comparing them to a } \\ \text { benchmark fraction } \\ \text { like } 1 / 2 .\end{array}\right\} \begin{array}{l}\text { I can recognize that } \\ \text { comparisons of } \\ \text { fractions are valid only } \\ \text { when the two } \\ \text { fractions refer to the } \\ \text { same whole. }\end{array}\right\}$


| Unit 8 Geometry | CCSS.Math.Content.4.MD.C. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: <br> CCSS.Math.Content.4.MD.C.5a An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. <br> CCSS.Math.Content.4.MD.C.5b An angle that turns through $n$ one-degree angles is said to have an angle measure of $n$ degrees. <br> CCSS.Math.Content.4.MD.C. 6 Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure. <br> CCSS.Math.Content.4.MD.C. 7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. | I can recognize angles as geometric shapes where two rays share a common end point. <br> I can understand that angles are measured with reference to a circle. <br> I can use a protractor to measure angles in whole number degrees. <br> I can solve addition and subtraction problems involving angles. <br> I can identify and draw points, lines, line | Math Expressions Common Core $4^{\text {th }}$ Grade <br> Unit 8 | Quick Quiz 8-1 <br> Quick Quiz 8-2 <br> Quick Quiz 8-3 <br> Quick Quiz 8-4 <br> Unit 8 Review and <br> Test Forms A and B |
| :---: | :---: | :---: | :---: | :---: |



|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

